

LA-UR-21-27289

Approved for public release; distribution is unlimited.

Title: Understanding materials in extreme conditions via spectroscopy

Author(s): O'Neal, Kenneth Robert

Intended for: Job interview technical presentation

Issued: 2021-07-26

Understanding materials in extreme conditions via spectroscopy

Ken O'Neal

Spectroscopy

- Study of light-matter interaction
 - Light can be absorbed, transmitted, reflected, refracted, emitted, etc.
- Probes a wide variety of properties depending on wavelength of light
- Can be static or dynamic

Outline

FTIR and Raman

- Pressure-induced dimensionality crossover in Cu-3Cl(pyd)
- Local structure changes in Ni₃TeO₆ under pressure
- Size-dependent vibronic coupling in CuGeO₃ nanorods
- Ultrafast spectroscopy
 - Carrier dynamics of EuCd₂As₂
- Summary and Acknowledgements

Fourier Transform Infrared Spectroscopy

- Source beam is split into two
 - One goes to fixed mirror; other to moving mirror
 - Switches between destructive and constructive interference
- Recombined beam is passed to sample
 - Can do transmittance (absorbance) or reflectance
- Resulting interferogram is Fourier transformed to get a spectrum in the frequency domain
- Can be used to measure over broad spectral ranges

FTIR instruments

- Different configurations for different types of measurements
 - Varying spectral ranges and resolution, spatial resolution, etc.
- Can measure different sample forms (liquid, crystalline, powders)
- Can couple in cryostats for temperature control

Raman scattering

- Similar spectral ranges but different principle than FTIR
- Excite with one laser wavelength
 - Choice can affect spectra if it is near a resonance
- Measure in relative frequency (with laser line being 0 cm⁻¹)
 - Difficult to get to very low frequencies
- Can integrate over time to overcome low signal issues
 - Makes intensity relative

Measuring in extreme conditions

- Temperature (4.2 to 300 K)
 - Open-flow helium cryostat
- Magnetic field (done at NHMFL)
 - 35 T static fields
 - Up to 60 T pulsed fields
- Pressure (ambient to 20 GPa)
 - Diamond anvil cell

Analyzing spectra

- Fit spectra with standard functions
- Extract peak information depending on scientific interest
 - Center, fullwidth at half max, area
- Tracking as function of tuning parameter can reveal transitions
- Can be used to quantify coupling constants, fit to models, etc.

$CuF_2(H_2O)_2(3-chloropyridine)$

- Two-dimensional molecule-based magnet
 - Magnetic exchange within Cu-F-H₂O plane
- Magnetic crossover from AFM to FM at 0.8 GPa
- Complex spectra many peaks in both IR and Raman

What do the high pressure spectra show?

What do we learn?

- Combined IR, Raman, and calculations to get full picture
- New hydrogen bond formed under pressure with Cl
- New magnetic exchange pathway
 - Material goes from 2D to 3D
 - Magnetism changes from AFM to FM
- New structural transition discovered near 5.5 GPa

O'Neal, Sci. Rep. 4, 6054 (2014)

Multiferroic Ni₃TeO₆

- Ferroelectric and antiferromagnetic in ground state
- Temperature-magnetic field phase diagram known
- No previous pressure studies
- Structure is more complex than it at first appears
 - Three unique NiO₆ configurations
 - Empty O₆ cages throughout

High pressure spectra

- Measured both infrared and Raman
- Can assign all modes based on calculations and previous work

Subtle changes in spectra

- Tracking mode frequencies reveals reduced compressibility above 4 GPa
 - Slopes for several modes decrease here
- Supported by calculations of spectrum using structure under pressure
- Why only some modes?

What causes the slope change?

- Use calculated structures to look for clues
- Bond lengths all change linearly nothing to learn
- Bond angles also change linearly except for one!

What do we learn?

- Used detailed analysis to reveal cause of slope change
- Vibrations of atoms near the empty pocket all displayed the slope change
- Pocket compresses easily up to 4 GPa, then stiffens as atoms get closer
- Changes to magnetic exchange in line with preliminary measurements

O'Neal, Phys. Rev. B **98**, 184101 (2018)

CuGeO₃ nanorods

- Spin-Peierls transition at low temperature
- Bulk has been studied for over 20 years
- Can now grow nanorods new way to tune the properties
 - Control of nanorod length, keeping diameter similar
 - Spin-Peierls transition suppressed in shortest rods

Vibronic coupling

- d-d electronic transition is formally forbidden
 - Activated by odd parity phonon (IR-active)
- Temperature dependent oscillator strength can be modeled
 - Can indicate which phonon(s) are activating the transition

Vibronic coupling model limitations

- Typical vibronic coupling model did not work for nanorods
- Added a temperature-independent constant, f_{ν}
- Slight improvement in fit for bulk
 - Significant difference in phonon frequency
- Needed a physical basis for constant
 - Defects and edge effects
 - Distortions in crystal structure

What do we learn?

- New model worked for all nanorods
- Could track size dependence of coupled phonon frequency
- Crossover in most important phonon below rod length of 500 nm
 - Blue color comes from different origin
- New model can now apply to all nanomaterials

O'Neal, Phys. Rev. B 96, 075437 (2017)

Outline

- FTIR and Raman
 - Pressure-induced dimensionality crossover in Cu-3Cl(pyd)
 - Local structure changes in Ni₃TeO₆ under pressure
 - Size-dependent vibronic coupling in CuGeO₃ nanorods
- Ultrafast spectroscopy
 - Carrier dynamics of EuCd₂As₂
- Summary and Acknowledgements

Ultrafast spectroscopy

- Laser pulse excites material
- Second, weaker pulse measures changes
- · Varying the path length of the second pulse controls its arrival time
 - Allows for ultrafast measurements even with a slow detector
- Spectral selectivity, high sensitivity, small focal size, femtosecond timescale

EuCd₂As₂ – magnetic Weyl semimetal(?)

- Magnetic derivative of Cd₂As₃
- Growth conditions affect magnetism
 - (FM) $T_c = 30 \text{ K or (AFM) } T_N = 9 \text{ K}$
- Spins forced to align out of plane leads to Weyl semimetal with one pair of nodes
- Other measurements have been inconclusive

Across the magnetic ordering transition

- Measure as function of temperature
 - Observe changes across T_C = 30 K
- Overall changes appear gradual
 - Magnitude rises then falls
 - Timescale follows similar trend
- Need to fit data to learn more

Fitting the data

- Fit data at each temperature to extract parameters
- Model is complex
 - Rise from laser pulsewidth
 - Slow rise process
 - Two decay processes
 - Electron-phonon relaxation
 - Spin-phonon relaxation
- Follow parameters as function of temperature to look for changes across T_C

How does magnetism affect dynamics?

- Subtle signs of spin-charge coupling across T_C
- Much stronger changes near 70 K
 - Attributed to short-range, in-plane magnetic fluctuations

Summary

- Spectroscopy is powerful and non-destructive technique that can be used to study a wide range of materials
 - Can probe phase transitions with temperature, magnetic field, and pressure
- Detailed data analysis is key to deep understanding
 - Hydrogen bond formation in $CuF_2(H_2O)_2(3$ -chloropyridine)
 - Local structure changes in Ni₃TeO₆
 - Size-dependent vibronic coupling in CuGeO₃ nanorods
 - Ultrafast carrier dynamics in EuCd₂As₂

Acknowledgements

- CuF₂(H₂O)₂(3-chloropyridine)
 - Jan Musfeldt (advisor)
 - Puru Jena (calculations)
 - Zhenxian Liu (high pressure)
 - John Schlueter (synthesis)
- CuGeO₃
 - Jan Musfeldt (advisor)
 - Xue-Tai Chen (synthesis)

- EuCd₂As₂
 - Dmitry Yarotski (advisor)
 - Rohit Prasankumar (advisor)
 - Paul Canfield (synthesis)
- Funding
 - National Science Foundation
 - Department of Energy
 - CATS

